Novel Synthesis of 2-Aminothiophenes via lodoiminothiolactonization of γ, δ -Unsaturated Secondary Thioamides

Hiroki Takahata,* Keiko Moriyama, Mihoko Maruyama, and Takao Yamazaki*

Faculty of Pharmaceutical Sciences, Toyama Medical & Pharmaceutical University, 2630 Sugitani, Toyama 930–01, Japan

lodine-induced cyclization of γ , δ -unsaturated secondary thioamides proceeds regio- and chemo-selectively, providing, after elaboration, 2-aminothiophenes.

%)

Much attention is focused on electrophilic olefin cyclization processes that form carbon-heteroatom bonds as well as carbon-carbon bonds. Although among them halogenolact-onization is a well established important synthetic tool, the analogous thiolactonization using a thioamide group has been less investigated. Because of its versatility, the thioamide group has increasingly been recognized as a useful synthon. In continuation of our studies using thioamides as synthetic intermediates for heterocycles, we now report a novel one-pot synthesis of 2-aminothiophenes by iodine-induced intramolecular S-C bond formation with γ , δ -unsaturated secondary thioamides followed by dehydroiodination and N-acetylation.

The readily available γ , δ -unsaturated secondary thioamides $(1a-h)^{\dagger}$ with iodine in tetrahydrofuran (THF) underwent the iodoiminothiolactonization to give the iminothiolactones (2a

Scheme 1. Reagents: i, I₂; ii, DBU; iii, MeCOCl, DBU, DMAP (cat.).

Table 1. Preparation of 2-aminothiophenes (4a—h).

6.1		D.	D 2	D.4	D.	D 1 . / / 11
Substrate R ¹		\mathbb{R}^2	\mathbb{R}^3	R4	R^5	Product (yield, ^a
(1a)	PhCH ₂	Н	Н	Н	Н	(4a) 57
(1b)	Ph	Η	Η	Н	Η	(4b) 53
(1c)	$PhCH_2$	Н	Н	Н	Me	(4c) 25 ^b
(1d)	$PhCH_2$	Н	Η	Η	Ph	(4d) 50°
(1e)	$PhCH_2$	Н	Η	Me	Me	(4e) 47
(1f)	PhCH ₂	Н	Me	Η	Н	(4f) 49
(1g)	Ph	Me	Η	Н	Н	(4g) 54
(1h)	PhCH ₂	Me	Me	Н	Н	(4h) 37

 $[^]a$ Overall yield from (1). b (1c) was recovered in 17% yield. c (1d) was recovered in 24% yield.

-h), which without isolation were converted with 1.8-diazabicyclo[5.4.0]undec-7-ene (DBU, 2 equiv.) in the same flask into the exo-olefins (3a-h).‡ After THF as a solvent was replaced by CH₂Cl₂, N-acetylation of (3a—h) with acetyl chloride in the presence of DBU as a base and 4-dimethylaminopyridine (DMAP) as a catalyst followed by spontaneous aromatization gave (chromatography: silica; ethyl acetatehexane) the 2-aminothiophenes (4a—h) (Table 1). No trace of other compounds such as nitrogen-heterocycles was isolated. Accordingly, it was found that this iodine-induced cyclization proceeded regio- (5-exo-trigonal process)6 and chemo-selectively (sulphur-carbon bond formation).§ The structures assigned were confirmed by spectral data; \(e.g. \) (4a), m.p. 85—88 °C; v 1645 cm⁻¹ (C=O); δ_H (270 MHz) 2.03 (s, 3H, COMe), 2.36 (d, J 1.1 Hz, 3H, Me), 4.80 (s, 2H, CH₂Ph), 6.34 (d, J3.3 Hz, 1H, C-3-H), 6.46 (m, 1H, C-4-H); m/z 245 (M+).

This method should be applicable to the synthesis of polyfunctionalized 2-aminothiophenes using a variety of accessible unsaturated secondary thioamides. In addition, the intermediates (2) and (3) may be used for further elaboration.⁷

Received, 1st August 1986; Com. 1105

References

- 1 P. A. Bartlett, in 'Asymmetric Synthesis,' ed. J. D. Morrison, Academic Press, Orland, 1984, vol. 3, Part B, p. 411.
- 2 For a review, M. D. Dowle and D. I. Davies, Chem. Soc. Rev., 1979, 8, 171.
- 3 I. I. Ershova and V. I. Staninets, *Dopo. Akad. Nauk Ukr. RSR, Ser. B*, 1975, 1097; Y. Tamaru, M. Mizutani, Y. Furukawa, S. Kawamura, Z. Yoshida, K. Yanagi, and M. Minobe, *J. Am. Chem. Soc.*, 1984, **106**, 1079.
- 4 W. Walter and J. Voss, in 'The Chemistry of Amides,' ed. J. Zabicky, Interscience, London, 1970, p. 383; R. B. Woodward, Pure Appl. Chem., 1968, 17, 519; Y. Tamaru, M. Kagotnai, and Z. Yoshida, J. Org. Chem., 1980, 45, 5221; P. G. Magnus and P. Pappalardo, J. Am. Chem. Soc., 1983, 105, 6525; J. S. Petersen, G. Fels, and H. Rapoport, ibid., 1984, 106, 4539; M. Cinquini, A. Manfredi, H. Molinari, and A. Restelli, Tetrahedron, 1985, 41, 4929.
- 5 H. Takahata, A. Anzawa, K. Moriyama, and T. Yamazaki, Chem. Lett., 1986, 5; H. Takahata, T. Suzuki, and T. Yamazaki, Heterocycles, 1986, 24, 1247; H. Takahata, N. Hamada, and T. Yamazaki, Synthesis, 1986, 388.
- 6 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
- 7 For a review, see E. Vedejs and G. A. Krafft, *Tetrahedron*, 1982, 38, 2857.

[†] Compounds (1a—h) were prepared by allylation of dianions generated from secondary thioamides or thio-Claisen rearrangement of S-allylthioimidates.

[‡] At this stage, it was possible to isolate compounds (3).

[§] Amidoselenation using γ,δ-unsaturated secondary amides was not so regio- and chemo-selective: A. Toshimitsu, K. Terao, and S. Uemura, *Tetrahedron Lett.*, 1984, **25**, 5917; *J. Chem. Soc.*, *Chem. Commun.*, 1986, 530.

 $[\]P$ All new compounds had satisfactory combustion or high resolution mass spectral.